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ABSTRACT 

This report presents a solution for the supersonic inviscid flow around 

a spherically blunted body with a conically reentrant afterbody flying at a 

large angle of attack. The investigation was carried out by means of a 

direct numerical method for the calculation of unsteady, three-dimensional 

flow fields containing strong shock waves. The results presented include 

the location and shape of the bow shock and sonic lines, streamline patterns, 

the location of the stagnation point, and typical fluid property variations. 

The structure of the flow field is shown to be strongly influenced by the 

large angle of attack and by the body shape. The solution obtained is for an 

ideal gas; however, the method was developed in such a way that it can be 

readily extended to include nonequilibrium real gas effects. A description 

of the method and of special computational techniques required for its appli- 

cation is included. 
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enthalpy, ergs/g 

pressure, dynes/cm’ 

particle speed, cm/set 

radius, cm 

time, set 

radial velocity component, cm/set 

angular (0 ) velocity component, cm/set 

aximuthal ( v ) velocity component, cm/set 

angle of attack 

adiabatic exponent 

angular coordinates 

density, g/cm3 

b = on the surface of the body 
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t,Jm, y = partial derivatives 
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1. INTRODUCTION 

The purpose of this work was to determine the structure of the 

inviscid flow field developed in front of a blunt body with corners in super- 

sonic flight at a large angle of attack. The work was motivated by the proposed 

use of maneuverable, lifting reentry vehicles for lunar and interplanetary 

missions. Therefore, the shape selected for this investigation is a spheri- 

cally blunted forebody with a conically reentrant afterbody (see Fig. 1) which 

closely resembles the APOLLO vehicle. 

For the .above configuration, the flow field is described by means of an 

exact numerical solution of the governing differential equations. The results 

obtained include the location and shape of the shock wave and sonic lines, the 

surface pressure distribution, streamline patterns on the body surface and 

in the plane of symmetry, and typical fluid property variations. They indi- 

cate that the flow field is strongly asymmetric. The theoretical solution 

was compared with the available experimental data and the agreement found 

to be satisfactory. 

The problem of describing the shock layer in front of a blunt body has 

received considerable attention. The primary difficulty arises because of 

an incomplete knowledge of the boundary conditions on the shock layer; the 

location and strength of the bow shock and the location of the sonic line are 

not known. Several methods have been proposed for circumventing this dif- 

ficulty; however, most of these techniques rely heavily on assumptions of 

axisymmetric flow and/or a smooth body contour. 

The inverse method begins with an assumed shock shape and deter- 

mines the corresponding body. Van Dyke’ and Garabedian and Lieberstein 
2 

originally applied the technique to axisymmetric flows about bodies with 

smooth contours. Since, in the inverse problem, the body shape obtainedis 

extremely sensitive to the assumed shock shape, the procedure is unsuitable 

for contours with sharp corners. For the same reason, the method is 

difficult to apply to unsymmetric flow fields, since the required shock shape 

is complex. So far, the inverse technique has been applied successfully to 
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asymmetric flow fields when the angle of attack is sufficiently small to 

introduce only a perturbation on the symmetric solution. 394 

The direct method of integral relations5 has also been applied to 

asymmetric flows by several authors. 6,7,8 In such application, some 

additional assumption must be made: either that the maximum entropy 

streamline wets the body 6, 7 or that the stagnation streamline is perpen- 

dicular to the body surface. 8 
The present work, as well as the work of 

Swigart, 3 indicates that this is, in general, not true. In addition, this 

method becomes unwieldy when better than one strip approximation is 

attempted. 

The difficulty of unknown boundary conditions can be avoided by solving 

the unsteady problem for which the governing equations are hyperbolic. The 

body is accelerated from rest and the asymptotic (for large time) behavior 

of the unsteady flow field is determined. This is the technique employed in 

the present work. This procedure was originally used by Godunov and co- 

workers; 9 however, the application of their elaborate differencing scheme 

to three-dimensional flows appears impractical. 

Hence, in the present work, the method suggested by Bohachevsky and 

Rubin 10 for the computation of supersonic flows with detached shock waves 

was followed. In the computational proce s s, a generalization of the finite 

difference scheme first proposed by Lax 
11 

was employed. The simplicity 

of this scheme, which is discussed in Sections 1 to 4, was a major factor in 

the success of the present work. Application of the method, however, neces - 

sitated the development of special computing techniques because the storage 

capacity of the available IBM 7044 computer was insufficient for the large 

amount of data required by the three-dimensional flow field. This difficulty 

was circumvented by using magnetic tapes for auxiliary storage. To keep 

the computing time at reasonable length, the tapes were read sequentially 

and not used as a random access memory. 
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2. THE DIFFERENTIAL EQUATIONS 

Most difficulties in treating initial-boundary value problems are 

encountered, not in solving the differential equations, but in attempting to 

satisfy the boundary conditions. Therefore, a body-oriented coordinate 

system is adopted to simplify the latter task. For a spherically blunted 

body, the spherical polar coordinates are appropriate. The use of this 

coordinate system (Fig. 1) requires two modifications (which will be intro- 

duced later) in the computing procedure, but the ease with which the boundary 

conditions can be satisfied far outweighs the resulting complications. 

It was shown originally by Lax 11 that numerical solutions for flow 

fields containing strong shocks may be obtained if the governing equations 

are written in conservation, or divergence, form. In spherical coordinates, 

this form of the inviscid equation is: 

a. Conservation of Mass 

b. Conservation of the Three Momentum Components 

(2) 

(3) 

(4) 



C. Conservation of Ene rgy 

(5) 

where u is the radial, M the angular (e) , &the aximuthal (y) component 

of velocity, p2z lL=t /+A&= , p is the density, p is the pressure, and A 

is the enthalpy per unit mass. 

Equations (1) to (5) must be supplemented with a thermodynamic rela- 

tion 

(6) 

where f is the ratio of the specific heats. 

3. INITIAL AND BOUNDARY CONDITIONS 

We shall seek that solution of Equations (1) to (6) which, at t=O satis- 

fies the following initial conditions 

P = PO = constant 

F = PO = constant 

The above conditions represent a free stream of constant speed % at the 
0 

angle 0~ with respect to the ray 8 = 0 which is the axis of symmetry of the 

body. Figure 1 illustrates the geometry of the problem. 

The only boundary condition which should be imposed on the solution 

is the vanishing of the normal velocity component at the surface of the body. 
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Referring to Figure 1, this condition in the present case can be expressed 

as follows: 

a. On A= Itb (0wL e,> U-0 

b. On Qt0, (IL Ab) W-0 

C. On y=O and TT , which is the plane of symmetry formed 

by the velocity vector and the axis of the body, H= 0. 

At 8=0, which is the singular point of the coordinate system but a 

regular, interior point of the flow field, Equations (1) through (5) are not 

applicable. They are replaced by the following set 

(7) 

(9) 



The above relations are obtained by dividing each of the Equations (1) to (5) 

by 4i*2/ 8 and evaluating the limit as 8-0 , remembering that at 0~0 , 

-+I. This is the first of the two required modifications mentioned at 

the beginning of Section 1. 

4. THE DIFFERENCE EQUATIONS 

For the purpose of digital computation, the differential Equations (1) 

to (5) (and (7) to (11)) are replaced by the difference equations obtained in 

the following way 

Note that, in this process, each group of terms must not be separated, i.e., 

the product rule for differentiation should not be used. 

The time differences must be treated with more care. An averaging 

process must be carried out in order to prevent divergence at the shock and 

the averaging must be so performed that the free stream remains essentially 

constant in time. Since the velocity components (u,~,*cr) in the free stream 

are dependent on the location of the mesh points, simple averaging will cause 

a time variation of the free-stream velocity. This variation must be corrected 

in the averaging process. With these considerations in mind, the time deriva- 

tives are replaced by the following differences: 
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This difference scheme has been discussed in detail in Reference 10 and in 

references cited there. The change of averaging in the time differences of 

the velocity components is the second modification mentioned previously. 

The boundary conditions for the entire computing region shown in 

Figure 2 are specified as discussed in Reference 10 in the following way: 

the grid is extended one mesh width inside the solid body and outside the 

region of computation. None of the variables is computed there but assigned 

a value according to the following rules: 
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(4 u. at A‘- Aa for 8 6 Qb is the negative of U at It6+Ab ; 

all other variables assume at &,-A/L the same values they 

have at n6+c~. 

b) W at e6- A0 for /t 6 /“b is the negative of /zr at @,+Ae; 

all other variables assume at 8,-Aethe same values they 

have at Q6+ A@ . 

(c) ti at -A)o and TT+Ay is the negative of N at A)o and 77-AJO, 

respectively; other variables are to have the same values at 

points reflected in the )4=0 and )o =r plane. 

(4 At the outer boundary of the mesh in the 8 direction 8,,, for 

/t mm G n 6 lbma* and at the inner boundary of the mesh in the radial 

direction A,,,,,, for e,ces,,, we prescribe the vanishing of the 

second difference, i.e., use a linear extrapolation procedure. 

(e) At the outer boundary of the mesh in the radial direction, de- 

noted byh,,,=% for 0 6 06 emax , we hold all the variables equal 

to their free-stream values. It should be observed here that 

these values of p03 f* and 90 need not be constants, but may 

vary with time in a prescribed manner. The solution will then 

represent flight through a nonuniform atmosphere, in which 

case the steady state will never be reached but the method 

remains applicable. This property may also be used to generate 

families of solutions by changing free-stream Mach number 

or angle of attack and attaining the steady state for each new 

value. Such procedure will result in significantly more 

economical use of the computer. 

( f) At the corner point of the body (A in Fig. 2) when computing 

(updating) the values of the flow variables at B, the necessary 

values at D are obtained as in (a) above; when computing at 

C the necessary values are obtained as in (b). Thus, U and 

w (and other variables, if necessary) are double-valued at D, 

the value used depending on where the computation is being 

performed. 



In order to obtain satisfactory results, it is necessary that the 

surface b = 4maX lie in the undisturbed free stream (i. e., well ahead of the 

bow shock) and that 13=&,,,, together with &=nrnln lie wholly in the supersonic 

region of the flow. It has been established in Reference 10 that when these 

requirements are met, the conditions prescribed at those surfaces do not 

affect the solution. 

5. COMPUTATIONAL PROCEDURE 

The solution of the difference equations is straightforward. The values 

of the flow quantities are advanced in time using the finite difference analogues 

of Equations (1) to (5) successively in the same order in which they are 

written. The ensuing simplicity of the program logic makes it relatively 

easy to apply the method to flows about complex geometries and to extend 

the method to include nonequilibrium effects. 

The magnitude of the time step At used in the advance is controlled 

by the stability requirement. The Courant-Friedrichs - Lewy stability con- 

ditions which apply to linear hyperbolic partial differential equations are 

where a is the speed of sound. The computations reported in Reference 10 

suggest that these conditions are sufficient; in his investigation of the one- 

dimensional flows, Lax 
11 

points out that they appear necessary. We used 

them throughout the nonlinear field by estimating the smallest value of the 

right-hand side of the inequalities and choosing At accordingly and experi- 

enced no difficulty. Since the ray 8 =O is treated in a special manner, the 

vanishing of &8 does not cause any trouble. 

To obtain best results, A t should have the largest possible value 

which permits a stable computation since the spread of the shock transition 

is proportional primarily to CA&& . For the mesh size which we used, 

this value of At was 3. 5 x 10 -6 sec. 
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The primary difficulty in obtaining a solution stems from the number 

of space points required for an adequate definition of the flow field. For the 

computations presented in this paper the body shape was characterized (re- 

ferring to Fig. 1) by hb = 474 cm and eb = 35”. The computing region 

in one meridian plane is depicted in Fig. 2 where A,,, = 664 cm, 

8 
mQX 

s 20, , and A~,,, = A,,-JOA&. In the complete description of the 

three-dimensional field we used 30 such meridian planes. For the mesh 

size which we employed, i.e., Alt = 5 cm, AG = . 068, AY'=T/36 , 
the field contained about 24, 000 points. Even when the solution is restricted 

to the case of an ideal gas whose flow can be described by five variables, 

the number of values which must be stored is about 120, 000. This difficulty 

was circumvented by recording the flow variables on the magnetic tape. The 

use of magnetic tape storage does not increase the calculation times exces- 

sively since the tape is not used as a random access memory. 

6. PRESENTATION OF RESULTS 

In this section are presented the results of digital computations for an 

APOLLO-shaped vehicle at an angle of attack of 20”. The initial (free stream) 

conditions were PO = 9.16; lo5 cm/set, p0 = 3.14 x 10m7 g/m3, 

F0 = 2.26 x lo2 dynes/cm , a = 20” which for the 1959 ARDC atmosphere 

correspond to Mach number 28.9 (velocity = 30, 000 ft/sec) at an altitude of 

200, 000 ft in air for which f = 1.4. 

Because of the averaging in the finite difference equations, the shock is 

spread out over a finite distance in the flow field, typically 4 or 5 mesh 

widths. It was found in Reference 10 by comparison with the inverse method, 

that the shock can be located accurately by assigning its position to the midpoint 

of the density rise. The radial density distribution for several values of 8 

in the plane )o = 0 is shown in Figure 3. 

Using these results and a similar plot for 9 = 180”, the shock shape 

in the plane of symmetry can be determined. This shock shape is shown in 

10 



Figure 4 for several values of time. Initially, the shock moves out nearly 

parallel to the surface; rotation to account for the angle of attack occurs 

near the end of the calculation. Because of this, it is expected that a solution 

for a different angle of attack could be obtained in a relatively short -computing 

time using the present result as a starting point. Similar plots can be made 

for any meridian plane y = constant. For example, Figure 5 represents 

the radial density distribution in front of the body in the plane y = 120”. 

Comparison of Figures 3 and 5 also illustrates the effect of mesh size on 

the thickness of the shock. The results in Figure 3 were obtained with a 

refined mesh in the radial direction of 2.5 cm and those in Figure 5 with a 

5 cm mesh. 

Figure 6 represents the surface pressure distribution for the plane of 

symmetry after 150 time steps which was the number of steps required to 

establish the steady state, i. e., when the flow variables no longer change 

appreciably with time. From a similar plot of the 8 velocity component /ry 

we obtain the location of the stagnation point at the value of 0 where W= 0 

which for the present problem is 14.97 O. This is in good agreement with 

the experimental value of 14. 5” given by Kaattari. 
12 

The dotted curved 

indicates the simple Newtonian impact pressure distribution +=P,~I ~-A&&cx.~. 

The agreement is quite good on the leeward side, becomes poorer towards 

the stagnation point, and is worse on the windward side. The calculated 

pressure is less than the Newtonian value. Considering the approximate 

nature of the Newtonian theory, the agreement is surprisingly good in 

general. 

The streamline pattern in the plane of symmetry is shown in Figures 7 

and 8. Figure 7 represents the entire plane and Figure 8 is the enlarged 

view of the stagnation region. The streamlines themselves are obtained 

as integral curves of the direction field defined by the velocity vector 

(which is part of the numerical output) at each mesh point. In general, a 

streamline does not pass through the mesh points exactly and a linear 

interpolation is used to obtain its slope at intermediate points. The accuracy 

of such numerical integration of the velocity field was checked by using 
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successively smaller steps. From these results, it is apparent that the 

maximum entropy streamline, which passes normally through the shock, 

does not wet the body. 

Figure 7 includes also the sonic line which on the windward side 

reaches the badly behind the corner. (In view of the boundary logic for the 

finite difference scheme in this work, the corner is not sharp but has a 

radius of curvature less than one mesh width. ) In most aerodynamic 

analyses, 
5, 7, 12-14 it is usually assumed that on a body with sharp corners 

the sonic line will be attached to the corner. It appears reasonable, however, 

that with a sufficiently strong bow shock, the Mach number upstream of the 

corner will be so low that the expansion around the corner may be insufficient 

to cause transonic flow. 

In the present result the distance from the corner to the sonic point, 

7 radial mesh points, is a small fraction of the body radius (0. 04). Because 

of the dissipation introduced with the averaging process, 
10 the flow along 

streamlines is not exactly isentropic; this influences the location of the 

sonic line to some extent. These facts indicate the need for additional 

evidence before a definite conclusion can be drawn. 

A series of calculations was carried out for the zero angle of attack to 

determine the influence of the free stream Mach number and afterbody angle 

on the location of the sonic line. The shapes of the shock and sonic line for 

8, = 35” are shown in Figure 9 for free stream Mach numbers 29 and 4. 

The intersection of the sonic line with the body occurs in each case down- 

stream of the corner and moves slightly further downstream with increasing 

free stream Mach number consistent with the lower value of the Mach number 

upstream of the corner. Since the distance from the corner to the sonic line 

attachment point is 12 to 13 radial mesh widths for these calculations this 

effect does not appear to be caused by the lack of resolution in the solution. 

Corresponding results for 8, = 19.5” at the free stream Mach number 

of 29 are shown in Figure 10. Here the sonic line attaches also behind the 

corner. Similar calculations were carried out for the body angle larger than 

the extent of the subsonic flow region on the sphere. As expected, the sonic 

12 



line was attached to the body upstream of the corner and the results agreed 

with those reported in References 5 and 10. 

To ensure that the observed sonic line position was not a transient 

phenomenon its location was monitored during the course of the computation. 

The position of the sonic line was established quite early in the calculation 

process and showed no tendency to move toward the corner as the steady 

state was approached asymptotically. 

The small circles in Figure 7 denote the shock shape predicted by the 

empirical correlation presented in Reference 12. The shock layer thickness 

near the body axis agrees very well; however, the present calculations 

indicate a larger standoff distance near the corners. The experimental 

results for higher Mach numbers given by Kaattari in Reference 14 also 

show a larger standoff distance than the correlation near the corners and 

hence are consistent with our solution. 

Figure 11, the projection of the surface streamline pattern onto the 

plane normal to the axis of the body, illustrates the direction of the flow 

field on the spherical forebody. The sonic line location is also shown. 

The dashed lines in Figure 11 represent the Newtonian paths which are 

arcs of great circles passing through the stagnation point. The actual 

streamlines deviate considerably from the Newtonian prediction; because of 

the high pressure on the windward side the particles drift to leeward. This 

streamline torsion illustrates the three-dimensional nature of the solution 

and indicates the magnitude of the cross flow. These streamline patterns 

are in good agreement with the qualitative experimental results of Kaattari. 
12 

Simultaneously with the location of the streamlines, the numerical 

program computes the distribution of the thermodynamic variables along 

them. A typical result is shown in Figure 12 which represents the pressure 

distribution along streamline A in Figure 7. The pressure rises abruptly 

through the shock, decreases gradually as the flow expands along the body 

and finally drops rapidly at the corner. The peculiar behavior of pressure 

just behind the shock is apparently due to the numerical method and does not 

have any physical significance. 

13 



7. CONCLUDING REMARKS 

The object of this work was to develop a direct numerical technique 

for the computation of the flow field around a blunt body in hypersonic 

flight at an angle of attack. A solution has been obtained for an APOLLO- 

shaped vehicle at 20” angle of attack. 

The results indicate that the flow field is strongly three-dimensional. 

The stagnation point is located at a smaller angle from the body axis than 

is the free-stream velocity vector. The streamline which passes normally 

through the shock does not wet the body. The streamlines on the body sur- 

face show strong torsion which suggests that the boundary layer on the body 

will exhibit large cross-flow effects. There is evidence thatthe sonic line 

on the windward side of the body is not attached to the corner, but lies 

behind the corner. The results are in agreement with the available experi- 

mental data of Kaattari. 

The solution presented was carried out for an ideal gas in order to 

demonstrate the feasibility of the method for a simple case. By replacing 

Equation (6) by the appropriate expressions for a multicomponent mixture 

and adding the equations of chemical kinetics, it is possible to include the 

effects of nonequilibrium dissociation and ionization on the flow field. This 

calculation is currently being carried out. 
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OF SYMMETRY 
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Figure 9 SHOCK AND SONIC LINE LOCATIONS FOR 
AXISYMMETRIC FLOW-AFTERBODY 
ANGLE = 35O 
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ANGLE = 20° 
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